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Abstract. We discuss the pertinency of the log-Weibull model in the statistical understanding of energy
release for earthquake magnitude data. This model has many interesting features, the most remarkable of
which being: depending on the value α > 0 of the deformation index of the source, it may present tails
ranging from moderately heavy (α < 1) to very heavy (with tail index zero as α > 1), through hyperbolic
(power law) for the critical value α = 1. Under this model (for which a precise tail study is supplied), the
occurrence of power laws appears as a critical phenomenon: this reinforces the current trend predicting
that some departure from the ideal (strictly scaling fractal) model may be ubiquitous. Having applied an
affine transformation in the logarithmic scale, quantile estimation and the Kolmogorov-Smirnov statistics
are used to fit the log-Weibull distribution to a realization of an iid sample. This enables to decide whether
the upper tail of the phenomenon under study is light/heavy/very heavy. A comparative study of recorded
French and Japanese earthquake magnitudes suggests that they exhibit comparable tail behaviour, albeit
with different centrality and dispersion parameters.

PACS. 02.50.-r Probability theory, stochastic processes, and statistics – 05.20.-y Statistical mechanics –
89.90.+n Other areas of general interest to physicists

1 Introduction

The so-called “heavy-tailed” power-law distributions are
defined through a cpdf (cumulative probability distribu-
tion function) in the form

FE (z) = 1− (z/z0)−a a > 0. (1)

Such distributions have been used to model a wide range
of natural or social phenomena (see, e.g., [1–3]). A simple
distinctive feature of this class of distributions is that the
log-log plot of the complementary cumulative distribution
function 1 − FE (z) is a straight line with negative slope
−a. However, empirical cumulative distribution functions
have been shown to exhibit at most a limited quasi-linear
regime followed by significant curvature [4]. This is the
hint that, in some sense to be made precise in the sequel,
the power-law class should be “unstable”.

In [4], the authors argued that such departures from
the power-law description should not necessarily be ex-
plained by the finite size of the data, but could result
from a deeper departure from the power-law hypothesis.
Using rank-ordering statistics to back up their claim, they
suggested that occurrences of numerous phenomena, rang-
ing from earthquake death tolls and energies [5,6] to ra-
dio light emissions in galaxies, apparently fit the so-called
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“stretched exponential” (Weibull) subexponential distri-
bution

FE (z) = 1− exp
[
− (z/z0)1/α

]
α > 1. (2)

However, in a recent paper [7], it has been underlined that
the stretched exponential model could not account for the
skewness of the empirical distribution function of earth-
quake energy E in France; rather, the related heavy-tailed
Fréchet model has been shown to present nice fit proper-
ties in this respect. It turns out that both models can
be generated by deforming the exponentially distributed
driving source S through

E = (S/s0)α (3)

Here, s0 is a scale parameter, and α is a deformation index
of the energy source governing the tail behavior of the
distribution.

However, in the Weibull model the deformation index
α is positive, whereas in the Fréchet model it is negative:
the first model amplifies (expands) the triggering noisy
source whereas the second attenuates (damps) its effect as
it can be easily checked from the graph of the deformation
function x→ xα. This “damping” property of the Fréchet
distribution is questionable and puzzling, since high (low)
energies are produced by small (high) amplitudes of the
source.
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We then ask the following question: is there a simple
stochastic model for E which is source-expanding and can
account for both low and high energy tails?

In this article, we therefore advocate a simple (source-
expanding) class of distribution functions, the so-called
log-Weibull model class, presenting many interesting fea-
tures in this respect: depending on the value α > 0 of
its deformation index, it may present tails ranging from
moderately heavy (α < 1) to very heavy (with tail index
zero as α > 1), through hyperbolic (power law) for the
critical value α = 1. Thus, power-laws appear as a critical
phenomenon separating subcriticality (α < 1) from super-
criticality (α > 1). In addition, the stretched exponential
model may itself be recovered from the log-Weibull model
zooming in the far ends of its characteristic scales.

Physically, this model arises from the observation that
the ignition energy of the source should first be amplified
(as in the Weibull setup), then exponentiated to produce
the desired distribution for energy release: some additional
cascade phenomenon (an explosion of the type of a chain
reaction) is assumed to take place. As a result, a new type
of behavior for the tails of the energy release is forecasted
in the supercritical case: distributions with tail index zero
whose tails are fatter than the ones of any power law with
positive tail index. These phenomena exhibit quite un-
canny statistical properties, especially their tail properties
(with its various implications), which are studied in some
detail in Section 2.

Identifying the value of the model parameters which
fits the data in the best way according to some criterion
would enable to decide whether the phenomenon under
study exhibits light (moderately heavy), heavy or very
heavy extremal behavior from the tails. Limit theorems
for rank-ordering statistics, including the Kolmogorov-
Smirnov test, can then be used to test whether the iden-
tified model is compatible with the empirical cumulative
distribution as a whole or with its upper tail only.

It turns out that solving both the parameter identifi-
cation problem and the compatibility tests is made a lot
easier by using an affine transformation of the variable
logE, which therefore emerges as the “natural” choice of
coordinates for this class of problems: the logarithmic de-
formation smooths out the tails of the original energy vari-
able. The range of the observable variable X is now the
real line.

Crossing of the value α = 1 from below, the most
distinctive feature is that the upper-tails of X (for pos-
itive values) become fatter than the exponential lower-
tails (for negative values). Superexponential upper-tails,
lighter than exponential lower-tails, therefore stand for
a signature of the event α < 1 whereas subexponential
upper-tails, heavier than exponential lower-tails, indeed
is a signature of the event α > 1 for which energy is of
tail index zero: crossing α = 1 chiefly translates into a
skewness inversion of the df for X .

2 The log-Weibull energy model

2.1 The Weibull (stretched exponential) model

Consider the class of random variables defined as

E = (S/s0)α α > 0 s0 > 0 (4)

where S is an exponentially distributed random variable
with mean unity, i.e. with cpdf

FS (s) = 1− exp (−s) . (5)

The variable E can be seen as the output of some deter-
ministic “machine”, with parameters (α, s0), triggered by
the stochastic source of disorder S [8,7].

While s0 is simply a scaling factor, the parameter α
defines, roughly speaking, the way in which the disorder
generated by the source S is amplified through the trans-
formation (4) over the positive real axis. For positive z,
the density function (df ) and cpdf of E are obtained easily
by combining (4) with (5), yielding the Weibull distribu-
tion [9]:

fE (z) =
s0

α
z1/α−1 exp

(
−s0z

1/α
)

(6)

FE (z) = 1− exp
(
−s0z

1/α
)

with α > 0. (7)

E is a special case of the so-called Von Mises variables [10],
whose complementary cumulative distributions can be
written in the form

FE (z) := 1− FE (z) = FE (z0) exp−
∫ z

z0

hE (z) dz (8)

where the hazard energy density hE defined by this for-
mula verifies

lim
z↑+∞

zhE (z) = +∞. (9)

The cumulative distribution of a Von Mises variable de-
creases towards zero faster than hyperbolically, so that
these distributions are light-tailed (or rapidly varying). As
a consequence, these variables have moments of arbitrary
positive order. If in addition the function hE verifies

lim
z↑+∞

hE (z) = 0 (10)

the variable E is said to be subexponential (with moder-
ately heavy tails); otherwise, it is superexponential (with
thin tails). In the stretched exponential case, we get

hE (z) =
s0

α
z1/α−1. (11)

Thus, when α > 1 the Weibull variable E is subexponen-
tial, whereas for 0 < α < 1 it is superexponential.

For subexponential (superexponential) distributions,
the tails of the pdf decrease towards zero at exponential
rate or slower (faster) at +∞ .



T. Huillet, H.-F. Raynaud: Rare events in a log-Weibull scenario 459

Note that α = 1 yields the critical exponential model
and that the larger α is, the fatter the tails are for E,
while remaining exponential.

With symbol d→ standing for convergence in distribu-
tion, a remarkable attribute of the Weibull distribution is
the min-stable property:

nαE1:n
d→ E as n ↑ ∞. (12)

Here E1:n := min (E1, .., En) and En1 := (E1, .., En) is an
iid sample drawn from a distribution satisfying

FE (z) ∼
z↑0+

exp
(
−z1/α

)
. (13)

The n−α scaling of E1:n only shows the common behavior
at z = 0 of the constitutive elements of the minimum,
discarding all other details.

Note also that if En1 := (E1, .., En) is an iid sample
drawn from the distribution of E, (E1:n)n≥1 is a Markov
self-similar sequence (with similarity parameter −α) in
the sense that for any integer a ≥ 1

aαE1:an
d= E1:n . (14)

2.2 The chain reaction model

We shall next assume that this model for energy release
is not complete in the following sense: the random en-
ergy produced by the triggering of some random source
S actually proceeds in two steps; the first one is the one
just mentioned: S → Sα which informs us on the way the
source was initially deformed: in this respect, α may be
called the primary deformation index of the source. The
second one is Sα → expSα which one may relate to some
“avalanche” effect: the first step energy release enters into
a chain reaction (explosion) which snowballs into an ex-
ponential term to produce the final state variable.

In more precise terms, we shall assume that the right
model for energy release is

E = z0 (exp (S/s0)α − 1) > 0 (15)

where z0 > 0 is the (unknown) characteristic scale for E,
just like s0 > 0 was for S, and α is thus the primary
deformation index.

As the variable (S/s0)α has just been shown to be
distributed according to Weibull distribution, (15) now
defines a variate which is log-Weibull distributed in the
sense that log (1 +E/z0) simply is Weibull distributed.
This model will be shown to present a certain number of
interesting new features.

For positive z, the df and cpdf of E are now obtained
easily by combining (15) with (1), yielding the log-Weibull
distribution:

fE (z) =
s0

αz0

(
log
(

1 +
z

z0

))1/α−1

×
(

1 +
z

z0

)−1

FE (z) (16)

FE (z) = 1− exp−s0

(
log
(

1 +
z

z0

))1/α

with α > 0.

(17)

Note from this expression and criterion arising from (10)
that the energy E is subexponential whatever the value
of parameter α, so that the tails are at least moderately
heavy. Let us discuss the tails shape in more details, de-
pending on the value of parameter α. We shall distinguish
three cases:

– Subcritical energy release: α < 1.

When α < 1, it can easily be checked that, with the
hazard energy density hE defined from (8) applied to (17):
limz↑+∞ hE (z) = 0. Thus model (15) for energy release is
Von Mises’, with moderately heavy tails in the subcritical
region for α. This model can account for situations show-
ing significant departure from the power-law description
of nature.

In the subcritical range for the parameterα, this model
may be compared to the log-normal model [11] which also
belongs to the Von Mises, with moderately heavy tails’
class. For this model, it can easily be shown that

FE (z) ∼
z↑∞

exp
[
− (log z)2

]
(18)

Thus, the log-Weibull distribution has heavier tails than
the log-normal distribution as soon as α > 1/2. The log-
normal model has found numerous applications in various
fields such as nanosciences (where E is the grain size of
the nanoparticle) [12], internet traffic (network resource
demands) [13], finance with the geometrical Brownian mo-
tion [10], earth sciences especially in the evaluation of the
world oil and hydrocarbon reserve sizes [4,14,15] and tur-
bulence [16].

– Critical energy release: α = 1.

When α = 1, the cpdf of E is easily obtained from
(17), it is:

FE (z) = 1−
(

1 +
z

z0

)−s0
. (19)

Let us recall [17] that a distribution is said to be heavy-
tailed (or slowly varying), with tail index a > 0, if there
exists some finite strictly positive constant a such that

FE (z) ∼
z↑+∞

z−aL (z) (20)

where L is some function with regular variation, i.e. such
that for all strictly positive t:

lim
z↑+∞

L (tz)
L (z)

= 1. (21)

Such distributions have only moments of order less than
a, and the smaller a is, the fatter the tails are for the
distribution of E.
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This condition applied to (19) shows that the critical
model (15) for energy release is heavy-tailed, with tail in-
dex s0 > 0: in other words, it follows a Pareto-Zipf power
law [1,18] with exponent s0 > 0. Note that crossing the
value s0 = 1 in the critical model (α = 1) is again crit-
ical in the (weaker) sense that the energy E has infinite
mean when s0 ≤ 1, finite when s0 > 1. When s0 > 1, the
conditional excess mean value of E − zc given E > zc is
zc/ (s0 − 1) for large cutoff positive zc: scaling supercrit-
ical power laws have no intrinsic characteristic scale but
the one of the (tail) observer.

– Supercritical energy release: α > 1.

This is the most interesting feature of the model de-
scribed in this article.

When α > 1, the cpdf of E satisfies the following in-
teresting property, as a result of (17):

For any strictly positive constant a

FE (z)
z−a

→
z↑+∞

+∞ (22)

Thus the tails of the distribution of E are fatter than any
power-law with exponent a > 0: they are said to be heavy
tailed with tail index zero. As a result, such distributions
have no moment of any arbitrary positive order! Thus,
model (15) for energy release in the supercritical regime
is heavy-tailed, with tail index zero; we shall call such
models “very heavy tailed”: fitting this distribution to a
natural phenomenon would mean that there exists in na-
ture extreme situations with very heavy tails (and hence
very special properties); this fact, to the authors’ knowl-
edge, has not been underlined and discussed, at least in the
physics’ literature. It has been argued that distributions
with infinite mean are unrealistic in some physical appli-
cations, so that distributions with tail index zero should
be ruled out even more vigorously. However, the practical
relevance of such random variables remains on our opinion
an open question: after all, they can be considered “realis-
tic” in the more limited sense that they take finite values
with probability one.

Let us make three remarks on this model, underlining
its importance in our physical context:

Remark 1 As conventional wisdom suggests, the larger α,
the heavier the tails for E, ranging from moderately heavy
tails (α < 1) to very heavy tails (α > 1), through heavy
tails (power law) with exponent s0 > 0 in the critical situ-
ation when α = 1. In this model, the power laws appear as
a critical phenomenon. This may explain why (although
they are appealing due to the underlying self-similarity
property [2,19]), it is hard to observe such distributions
in nature: it separates two regimes very distinct from the
tail behavior point of view.

Remark 2 As noted above, for any value of α > 0, the
energy variable E is subexponential, i.e. exhibits at least
moderately heavy tails.

The maximum En:n := max (E1, .., En) of an n-
sample (E1, .., En) is tail equivalent to the sum En :=

∑n
m=1Em [10], in the sense that

P (En:n > x)
P
(
En > x

) →
x↑+∞

1 (23)

The tail of the maximum determines the tail of the sum.
If α > 1, hence with distributions with tail index zero,
two stronger results actually hold. They are

En:n

En
→ 1 (in probability). (24)

In addition, if and only if: α > 2 ([20,21]),

En:n

En
→ 1 (almost surely). (25)

In this case, a single event explains (in probability or even
almost surely) a cumulative event.

Remark 3 The Weibull (stretched exponential) model it-
self may be recovered from the following interesting scaling
property of the log-Weibull model (15):

E
d→ (S/s)α (26)

as z0 ↑ ∞, s0 ↑ ∞ while s0/(z
1/α
0 ) = s > 0. As a result,

when the characteristic scales for E and S both tend to
infinity while the ratio s0/z

1/α
0 is held constant, one re-

covers the stretched exponential model for energy release
as a limit case. This may explain why the stretched expo-
nential distribution may be identified with a phenomenon
with no characteristic scale in itself.

3 Collecting data

3.1 The logarithmic model

In many physical situations, the random variable E is
not directly observed. Rather, the observed variable is the
real-valued variable

X := µ+ σ log (E/z0) . (27)

In this equation, σ > 0 is now the characteristic scale
(dispersion parameter) for the observable X , whereas µ is
a location (centrality) parameter.

The distinctive feature of the logarithmic scale is that
it measures the distance between two values through their
ratio rather than their difference. Thus, the intensity of
noise, as perceived by the human ear, is usually measured
in decibels, i.e. using a logarithmic scale. Similarly, earth-
quake magnitude is determined from the logarithm of the
amplitude of waves recorded by seismographs, properly
adjusted to compensate for the variation in the distance
between the various seismographs and the epicenter of the
earthquake.

Another motivation for working with X rather than
with E is that the logarithmic transformation has a regu-
larizing effect on the distribution’s tail: logarithms are no-
torious for contracting data. Most notably, as noted above,
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E may have no mean value (in both critical heavy-tailed
range α = 1, when 0 < s0 < 1 and in the whole supercrit-
ical range α > 1 where no positive moment at all exist),
whereas, as we shall see,X always has positive moments of
any order – a fact which suggests that when dealing with
heavy tailed distributions for energies one should rather
consider their geometrical empirical mean rather than the
arithmetical one: multiplicative micro-pulses generate log-
Weibull energies.

Elementary calculations yield the df and pdf for the
variable X

fX (x) =
s0

ασ

(
log
(

1 + e(x−µ)/σ
))1/α−1

×
(

1 + e(µ−x)/σ
)−1

FX (x) (28)

FX (x) = 1− exp−s0

(
log
(

1 + e(x−µ)/σ
))1/α

. (29)

For all choice of the parameter vector (α, s0, σ, µ) , the
variable X is Von Mises’, as

lim
x↑+∞

xhX (x) = +∞ (30)

with hazard energy density given by

hX (x) =
s0

ασ

(
log
(

1 + e(x−µ)/σ
))1/α−1

×
(

1 + e(µ−x)/σ
)−1

. (31)

More precisely,

FX (x) ∼
x↑+∞

exp−s0 (x/σ)1/α (32)

so that

hX (x) ∼
x↑+∞

s0

ασ
(x/σ)1/α−1

. (33)

Consequently, when α < 1 (respectively α > 1) it is super-
exponential (respectively subexponential), which means
that the tails of its pdf decrease towards zero at rate faster
(slower) than exponential at x = +∞. In this case, the
distribution is tail-equivalent to a Weibull model.

At x = −∞, we have

FX (x) ∼
x↑−∞

s0 expα (x/σ) . (34)

Thus, X always exhibits exponential tails at x = −∞.
Hence, in all cases, the distribution of the observable

is Von Mises′ (and thus with integral moments of arbi-
trary order). It is very asymmetric except in the critical
case α = 1, with strictly exponential tails at both ends of
the support. When α = 1, the upper distribution tail is
exponential, with parameter s0/σ, whereas the lower tail
is exponential, with parameter 1/σ. Perfect symmetry of
the distribution is obtained only when α = s0 = 1.

Therefore, the most distinctive feature of the fact of
crossing the value α = 1 from below is that the upper-
tails (for positive x) become fatter than the exponential
lower-tails (for negative x). Superexponential upper-tails,
lighter than exponential lower-tails, therefore stand out as
a signature of the event α < 1. Conversely, subexponential
upper-tails, heavier than exponential lower-tails, indeed is
a signature of the event α > 1 for which energy is of
tail index zero. Thus, the distribution’s asymmetry gets
inverted upon crossing the threshold α = 1.

3.2 Large deviation from the mean

From the law of large numbers, the empirical mean 1
nXn

converges almost surely towards the theoretical mean, say
mX := EX of X , which is known to exist. Large devia-
tion theory is concerned with the evaluation of the (small)
probability [22]

P

(
1
n
Xn > x

)
(35)

when x exceeds the mean. More precisely, it is concerned
with the rate at which this probability tends to zero, as
a function of the sample size n. We shall distinguish two
cases, depending on the tail behavior of X :

– α ≤ 1. In this case the Laplace transform of fX (x),
say

Z (β) :=
∫
R

e−βxfX (x) dx (36)

(with real β) is defined in a open neighborhood of
β = 0. As a result, it is well-known that, with x > mX

n−1 logP
(

1
n
Xn > x

)
→
n↑∞

s ((x− µ) /σ) < 0. (37)

Here s ((x− µ) /σ) the concave Cramér-Chernoff
transform of the “free energy” − logZ (β). The proba-
bility that the empirical mean deviates from the mean
tends to zero exponentially fast as n grows, with rate
s ((x− µ) /σ).

– α > 1. The function Z (β) is no longer defined in a
neighborhood of β = 0, so that the previous result
does not hold in this (subexponential) case. However,
from the tail equivalence of the maximum and sum for
subexponential distributions, one gets

P

(
1
n
Xn > x

)
∼
n↑∞

P

(
1
n
Xn:n > x

)
=

1− (FX (nx))n . (38)

From (29), with x > mX

1− (FX (nx))n

∼
n↑∞

n exp−s0

(
log
(

1 + en(x−µ)/σ
))1/α

∼
n↑∞

exp−s0 (n (x− µ) /σ)1/α (39)
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showing that (37) should be replaced by

n−1/α logP
(

1
n
Xn > x

)
→
n↑∞
−s0 ((x− µ) /σ)1/α < 0. (40)

This formula exhibits a slower decay of P
(

1
nXn > x

)
to-

wards zero, due to the presence of moderately heavy tails
as α > 1.

Note that the arithmetic mean for the sequence Xn
1 ,

1
n

∑n
m=1Xm, corresponds to a geometric mean of the en-

ergy records En1 :
∏n
m=1E

1/n
m . This observation and the

large deviation results just mentioned show that there are
large deviation results for the energy sequence itself but
not of its empirical arithmetic mean (it simply could not
converge) but rather of its empirical geometrical mean.
In explicit form, (37,40) read in terms of the geometrical
mean of the energies

n−1 logP

(
n∏

m=1

E1/n
m > z

)
→
n↑∞

s (log (z/z0)) < 0 (41)

as α ≤ 1.

n−1/α logP

(
n∏

m=1

E1/n
m > z

)
→
n↑∞
−s0 log1/α (z/z0) < 0.

(42)

as α > 1.

3.3 Asymptotic behavior for the max(min)imum
of the observable

When dealing with extreme events, it may be useful to
understand the way the max(min)imal event behaves as
the sample size grows [23,24].

First observe the obvious fact that Xn:n
a.s.→ ∞, as

n ↑ ∞. This observation does not enclose too much infor-
mation and one would like a deeper insight on how the
order of magnitude of the maximum evolves, as n ↑ ∞.
This is the purpose of what follows.

Define the increasing quantile sequence (x∗n)n≥1 by

nFX (x∗n) = 1. (43)

Then, the Fisher-Tippett theorem [9,10] for Von
Mises’ variable yields the following convergence in dis-
tribution for the maximum Xn:n := max (X1, ..., Xn),

hX (x∗n) (Xn:n − x∗n) d→ G as n ↑ ∞. (44)

where G is a Gumbel random variable, i.e. with cpdf:
P (G ≤ t) = e−e−t .

In our case, with σ > 0, one may check that

x∗n ∼
n↑+∞

σ

[
1
s0

logn
]α

(45)

and that

hX (x∗n) ∼
n↑+∞

s0

ασ

[
1
s0

log n
]1−α

. (46)

As a result, the maximum typically grows like (logn)α.
Remark also from (44) that the quantity (hX (x))−1 can
be interpreted as the absolute standard fluctuation for the
maximum around x = x∗n: from the previous expression of
hX (x∗n), this absolute fluctuation tends to +∞ (zero) as
n grows depending on α > 1 (α < 1) and thus showing
(again) two distinct regimes. However, in any case, the rel-
ative fluctuation for the maximum: 1/ (x∗nhX (x∗n)) tends
to zero as n ↑ ∞.

Concerning the minimum of n iid observed random
variables, say X1:n := min (Xn

1 ), one has

X1:n = −max (−Xn
1 ) (47)

so that it suffices to reason in a similar way as for the
maximum, but working with −X .

Proceeding this way, one easily shows that the mini-
mum typically behaves like

x∗n ∼
n↑+∞

− σ
s0

log (ns0) (48)

with constant absolute standard fluctuation σ/α.
These constructions allow for an approximation of the

width of the confidence interval of the max(min)imum
around their “typical” value x∗n, as the sample size n
grows. To do this, one should fix a small real number,
say δ = 0.05, and compute the radius of the ball centered
at x∗n which is likely (with probability 1−δ) to include the
maximum value in the data set. Using the asymptotic be-
havior (44), this confidence interval is therefore obtained
in the form [x∗n − ε (δ) ;x∗n + ε (δ)], where

P (|G| > ε (δ)hX (x∗n)) = δ. (49)

Thus, for δ = 0.05, we get

ε (δ) ' 3
hX (x∗n)

(50)

and the test for adequacy of the tail distribu-
tion is as follows: accept the hypothesis if xn:n ∈
[x∗n − ε (δ) ;x∗n + ε (δ)], reject it otherwise.

4 Parameter identification

We now address the problem of fitting this model to a par-
ticular data set. The problem is to decide whether, and for
what choice of the parameter set (α, s0, σ, µ), the distri-
bution function FX is a good statistical model for a par-
ticular data set (x1, x2, . . . , xn); or equivalently, whether
FE is a good model for the data set (ex1 , ex2 , . . . , exn) un-
der the hypothesis that (x1, x2, . . . , xn) is a realization of
an iid sequence Xn

1 := (X1, X2, . . . , Xn) with pdf FX .
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The solution advocated here will be a procedure based on
the Kolmogorov-Smirnov test.

The Kolmogorov-Smirnov test allows one to decide
whether or not an iid sample has been drawn according
to some completely known probability distribution func-
tion, using a rescaled measure of the distance between the
empirical and theoretical pdfs (the Kolmogorov-Smirnov
statistics). However, if the distribution function depends
on unknown parameters and if the sample has been used
to estimate those parameters, the Kolmogorov-Smirnov
statistics should be corrected to take into account the de-
pendency resulting from parameter identification. This is
a difficult problem which, to the authors’ knowledge, has
so far been solved only for very special cases, such as nor-
mal or exponential distributions [25,26]. A simple, albeit
suboptimal, alternative is to cut the data set in two sub-
samples; the first one will be used to identify the distribu-
tion’s parameters, and the second one to test the adequacy
of the identified model.

We therefore propose the following three-steps param-
eter identification procedure:

– The first step, discussed in Section 4.1, is to use
quantile estimation techniques and the first subsam-
ple to obtain an initial value for the parameter set
(α, s0, σ, µ). The purpose of this initial identification
is to determine the order of magnitude for the model
parameters.

– The second step, discussed in Section 4.2, is to search
the value of the parameter quadruple which minimizes
the Kolmogorov-Smirnov distance for the first subsam-
ple, using the initial value obtained in step 1 as a start-
ing point for a local non-linear optimization algorithm.

– The third step, discussed in Section 4.3, is to test the
adequacy of this estimated distribution with the em-
pirical distribution of the second subsample, using a
standard Kolmogorov-Smirnov test.
In the sequel, the two subsamples used for identifica-

tion and testing will be denoted respectively

x(1) :=
(
x

(1)
1 , x

(1)
2 , . . . , x(1)

n1

)
(51)

x(2) :=
(
x

(2)
1 , x

(2)
2 , . . . , x(2)

n2

)
(52)

with n1 + n2 = n.

4.1 Step one: quantile estimation

For any p ∈ (0, 1), the theoretical p-quantile x (p) is de-
fined by: FX (x (p)) = p. From (29), this is also(

− 1
s0

log (1− p)
)α

= log
(

1 + exp
x (p)− µ

σ

)
> 0.

(53)

Taking the logarithm of this equality yields

−α log s0 + α log log (1/ (1− p)) =

log log
(

1 + exp
x (p)− µ

σ

)
. (54)

This formula shows that, if the model fits the data for
some parameter set (α, s0, σ, µ), the quantities

y (p) := log log (1/ (1− p)) (55)

z (p) := log log
(

1 + exp
x (p)− µ

σ

)
(56)

should be aligned, as p varies in (0, 1), with positive slope
α and abscissa at the origin −α log s0.

Now, choose four distinct probability val-
ues (p1, p2, p3, p4) for parameter p – for example
p = (0.05, 0.25, 0.75, 0.95). Denote as (x1:n1 , .., xn1:n1) the
ordered version of subsample x(1), which means

x1:n1 < .. < xm:n1 < .. < xn1:n1 (57)

The empirical p-quantiles are respectively

xn1 (p) = x[n1p]:n1 +(
x[n1p]+1:n1 − x[n1p]:n1

)
(n1p− [n1p]) (58)

for p = pi, i = 1, . . . , 4, where [x] stands for the integer
part of x.

Next, the quantile estimation algorithm works as fol-
lows:

– for each i = 1, . . . , 4, compute the abscissa y (pi) and
the associated empirical ordinate

z (pi) := log log
(

1 + exp
xn1 (pi)− µ

σ

)
(59)

– Find the value of (µ, σ), say (µ, σ), which aligns the
four points (y (pi) , z (pi)) for i = 1, . . . , 4. Once this
alignment is performed, the slope of the straight line,
say α, is the estimated value of parameter α, while
from the reading a of the abscissa at the origin, an
estimator s0 for the characteristic scale s0 of the source
is

s0 = exp (−a/α) (60)

4.2 Step two: minimizing the Kolmogorov-Smirnov
distance

Let (X1:n1 , .., Xn1:n1) be the ordered version of the iid sub-
sample X(1) with pdf FX , and let F−X be the quantile
distribution function (qdf) of X :

F−X (p) := inf (x : FX (x) > p) (61)

This qdf is easily computed from (17-19):

F−X (p) = µ+ σ log
(

exp
[
− 1
s0

log (1− p)
]α
− 1
)
. (62)

Denote as Fn1 the empirical pdf of subsample one, i.e.

Fn1 (x) :=
1
n1

n1∑
m=1

1 (xm:n1 ≤ x) . (63)
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The Kolmogorov-Smirnov distance between the empirical
and theoretical pdfs is defined by

sup
x
|Fn1 (x)− FX (x)| . (64)

This distance is used as an optimization criterion for iden-
tifying an optimal value of the parameter set. Starting
from the initial value (α, s0, σ, µ), we search for

(α̂, ŝ0, σ̂, µ̂) := argmin
(α,s0,σ,µ)

(
sup
x
|Fn1 (x)− FX (x)|

)
(65)

using a local minimization algorithm.

4.3 Step three: Kolmogorov-Smirnov test

Finally, we test whether the empirical distribution of sub-
sample two has been drawn from the theoretical pdf (29),
say F̂X , corresponding to (α, s0, σ, µ) = (α̂, ŝ0, σ̂, µ̂) . Since
these parameters have been estimated from subsample
one, which by assumption is independent from subsam-
ple two, we can now take F̂X as a completely known pdf
for subsample two. We are therefore in a position to apply
the Kolmogorov-Smirnov test in its standard form.

Let Fn2 be the empirical pdf of subsample two. The
relevant Kolmogorov-Smirnov distance is now

sup
x

∣∣∣Fn2 (x)− F̂X (x)
∣∣∣ . (66)

Using the transformation x = F̂−X (p) , this is also

sup
p∈[0,1]

∣∣FUn2
(p)− p

∣∣ (67)

where FUn2
is the empirical pdf of an iid uniform sequence

of size n2 on the interval (0, 1) . Using this notation, it is
shown [27] that

√
n2 sup

p∈[0,1]

∣∣FUn2
(p)− p

∣∣ d→
n2↑∞

M (68)

where the variable M is the absolute supremum of a Brow-
nian bridge, whose pdf is

FM (z) = 1− 2
∑
k≥1

(−1)k−1 exp
(
−2k2z2

)
. (69)

A first consequence of (68) is that, as the sample size n2 in-
creases, the graph of the ordered sample versus the quan-
tile function should converge towards a straight line with
slope one. To test whether this graph is close enough to
this limit, one should search for the level value γn2 (δ) such
that

P

{
sup
p∈[0,1]

∣∣FUn2
(p)− p

∣∣ > γn2 (δ)

}
= δ (70)

for small δ (say δ = 0.05). For large n2, we get from
(68,69):

γn2 (δ) ' 1√
n2

[
log (2/δ)

2

]1/2

. (71)

Thus, the Kolmogorov-Smirnov test works as follows: a)
transform the subsample two into

Un2
1 :=

(
F̂X
(
X

(2)
1

)
, .., F̂X

(
X(2)
n2

))
(72)

b) compute

max
m=1,..,n2

|m/n2 − Um:n2 | = sup
p∈[0,1]

∣∣FUn2
(p)− p

∣∣ (73)

where (U1:n2 , . . . , Um:n2) is the ordered version of Un2
1 ;

c) if this number exceeds γn2 (δ) , reject the hypothesis
that the sample has been generated with the theoretical
pdf F̂X , otherwise accept it. δ is the probability to decide
that the sample is not a realization of the distribution F̂X
when it really is.

Note that another possible way to test the model ad-
equacy is to use the fact that for any sequence of inte-
gers 1 ≤ m1 < m2 < · · · < mk ≤ n2, the difference
between Xmk:n2 := (Xm1:n2 , . . . , Xmk:n2) and the multi-
dimensional qdf

F̂−X (mk/n) :=
(
F̂−X (m1/n2) , . . . , F̂−X (mk/n2)

)
(74)

when properly normalized, converges towards a Gaussian
distribution as the sample size n2 increases [7].

5 Application to Japanese and French
recorded earthquake magnitudes

5.1 Modelling issues for earthquake magnitude data

In the standard Gutenberg-Richter model for earthquake
magnitude [28], the logarithm of the probability for the
magnitude to be greater than x is given by a relation in
the form

log10 (P (X > x)) = a− bx (75)

The magnitude X is related to the seismic moment E (the
amount of energy released by the earthquake) through

X =
1
β

[log10 (E)− 9] . (76)

From these two relations, one deduces that E follows a
power-law with exponent µ = b/β. For small and in-
termediate magnitude earthquakes, e.g. 0 < X < 7 or
0 < X < 8, statistical evidence shows that b ' 1 and
β ' 3/2, so that µ ' 2/3 < 1 [29]. Should this distribution
be extended to large and very large magnitudes, it would
require E to have infinite mean, which is considered by
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seismologists as physically abhorrent. One way to circum-
vent this drawback is to assume that the power-law model
with µ ' 2/3 holds only below some crossover energy Ec,
and that a different power-law distribution with exponent
µ′ > 1 holds for E > Ec [6]. A different approach is to in-
troduce a distribution which is close to a power-law with
exponent µ < 1 for intermediate values of E, while show-
ing a significant departure from the power-law for high
energies. Such distributions include the stretched expo-
nential model [4], the parabolic fractal model [14] (which
in addition has compact support), and the so-called “soft”
magnitude cut-off model based on a Gamma-like distribu-
tion, first introduced by Kagan [29–32] and Main [33]. In
the latter model, it is assumed that there exists a cut-off
value Ec under which the power-law holds, and that above
this threshold the density is in the form Cz−(1+µ)e−βz,
i.e. the power-law multiplied by an exponential roll-off at
large moments. The corresponding cpdf decreases towards
zero like z−µe−βz for large z, so that this model enables to
account for a significant departure from the pure power-
law distribution. In addition, it has been shown that this
distribution is the best model, in the sense of a Kullback
“distance”, under the two hypothesis that the Gutenberg-
Richter power law holds in the absence of any condition
and that one additional constraint (distribution’s moment
release rate) is imposed [34].

The properties of the log-Weibull model discussed in
Section 2 can be related to these considerations by under-
lining that when α < 1, E is Von Mises with moderately
heavy tail, so that the average energy is finite, and that
when α = 1 the power-law model is recovered as a critical
case, with tail index s0. When α is less than yet close to
one, the distribution is close to a power-law with exponent
s0, albeit with a cpdf which decreases towards zero faster
than Cz−(1+s0). However, the model does not incorporate
an explicit cut-off value.

An important feature of earthquake catalogs is that
data on small earthquakes are strongly deficient, due to
incomplete, bad registration of low magnitude events. One
way to address this problem would have been to con-
sider the data as a realization of a truncated distribution;
in effect, this amounts to the assumption that there ex-
ists some fixed detection threshold above which all earth-
quakes are recorded. Such a threshold could have been
either estimated from the data or deduced from physi-
cal considerations, at the price of discarding part of the
data. However, the probability for an earthquake to be
detected is influenced by many factors, including purely
human ones, so that the very notion of a cutoff threshold
is ill-defined. A possible approach is to introduce a detec-
tion probability as an additional gaussian random variable
[35]. This complicates the estimation problem by adding
two parameters to the stochastic model.

Alternatively, one may simply seek to identify the dis-
tribution of recorded earthquakes, while being aware that
this phenomenon results from the combination of a natu-
ral phenomenon and observational factors. This is justified
by the fact that bad registration only concerns low mag-
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Fig. 1. Normalized histograms of magnitude data (Richter
scale) for France (above) and Japan.

nitudes, while the main purpose of the modelling effort is
to identify the upper tail of the distribution.

However, this requires that the distribution model has
sufficient flexibility (in practice, a sufficient number of pa-
rameters) to take into account different combinations of
lower and upper tail behaviors. In Section 2, it has been
shown that the log-Weibull model does indeed possess
such flexibility.

5.2 Fitting the log-Weibull model

The identification procedure described in Section 4 was
tested on two distinct earthquake magnitude records ob-
tained from the Northern California Earthquake Data
Center (NCEDC). The first data set comprises all earth-
quakes recorded from November 1995 to October 1998
in a polygon corresponding roughly to the boundaries of
metropolitan France, excluding Corsica (November 1995
was chosen as a starting point because prior to this date,
this catalog apparently assigned a magnitude of one to all
recorded small earthquakes). The second data set includes
all recorded earthquakes in an area enclosing the Japanese
archipelago from 1962 to February 1999. Records of earth-
quake magnitude are well suited to our purposes because
of the logarithmic basis of the scale.

On the Richter scale, magnitude is expressed in whole
numbers and decimal fractions. This round-up effect
makes the raw data inconsistent with any continuous
model of the probability distribution function. To over-
come this minor obstacle, we regularized the data by
adding to each recorded value an iid random noise uni-
formly distributed in the range (−0.05; 0.05).

These two samples are of comparable sizes, containing
respectively n = 3245 and n = 3927 events ranging from
0.3 to 5.0 (France) and from 2.9 to 7.4 (Japan) on the
Richter scale. The corresponding normalized histograms
are presented in Figure 1. Both empirical distributions
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Fig. 2. Estimated df and normalized empirical histogram for
France.

are asymmetrical. In both cases, the subsample used for
parameter identification (steps one and two in Sect. 4)
was obtained by taking one out of two successive events
in chronological order.

Applying the first two steps of the estimation pro-
cedure in Section 4, with the choice of quantile vector
p = (0.05, 0.25, 0.75, 0.95) and with n1 = 1623, we get for
France

(α, s0, σ, µ) = (0.848, 1.237, 0.164, 1.758) (77)
(α̂, ŝ0, σ̂, µ̂) = (0.949, 0.331, 0.167, 1.840) . (78)

Thus, the estimated value for α is less than one, which
means that the distribution tail for the underlying en-
ergy variable E = z0 exp ((X − µ) /σ) is subcritical. The
Kolmogorov-Smirnov distance for subsample two and the
theoretical pdf F̂X obtained from subsample one is

sup
x

∣∣∣Fn2 (x)− F̂X (x)
∣∣∣ = 9.3× 10−3 (79)

to be compared, for the risk δ = 0.05 and n2 = 1622, with
the level value

γn2 (δ) ' 1√
n2

[
log (2/δ)

2

]1/2

' 3.37× 10−2. (80)

Therefore, the hypothesis that subsample two has been
generated with the theoretical pdf F̂X with parameters
(α̂, ŝ0, σ̂, µ̂) should be accepted. The corresponding df
versus the histogram for the complete sample is presented
in Figure 2. In order to assess the quality of the fit for the
upper distribution tail, Figure 3 shows the estimated and
empirical cpdfs, in log-log scale, for large magnitudes. In
addition, Figure 4 shows the estimated quantile function
F̂−X versus the ordered complete sample.

In both Figure 3 and Figure 4, the discrepancy be-
tween estimated and empirical cumulative distributions
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Fig. 3. Complementary probability distributions as a function
of magnitude for France, log-log scale: empirical (solid line) and
estimated (dotted line).
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Fig. 4. Ordered sample versus quantile function for France.

increases as the magnitude approaches the empirical max-
imum, where data are sparse. One needs to test whether
this discrepancy is compatible with the estimated distri-
bution; in other words, is it likely that an iid sample drawn
according to the estimated distribution exhibit the same
fluctuations? One way to address this problem is to test
whether the maximum value in subsample two is compat-
ible with the estimated distribution, using the results in
Section 3.3. In this case, the confidence interval with level
δ = 0.05 is[

x∗n2
− ε (δ) ;x∗n2

+ ε (δ)
]

= [3.74; 6.32] (81)

and contains the empirical maximum xn2:n2 = 5. This
proves that the empirical maximum is statistically com-
patible with the estimated distribution. This procedure
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Fig. 5. Estimated df and normalized empirical histogram for
Japan.

can be extended to test the compatibility of the n − p’
largest value in the sample, with n− p “close” to n [7].

Since the estimated value for α is close to one, one
should wonder whether this conclusion really constitutes
solid statistical evidence of subcriticality. While based on
a very different model class, these results are consistent
with the findings in [7], using the same data set.

For Japan, using the same quantile vector p and n1 =
1964, we get

(α, s0, σ, µ) = (1.088, 0.312, 0.229, 4.414) (82)
(α̂, ŝ0, σ̂, µ̂) = (0.962, 0.708, 0.257, 4.388) . (83)

Here too, the estimated value for α is less than one, and
close to the estimated value for France. The value of the
Kolmogorov-Smirnov distance for subsample two, with
n2 = 1963, is 1.47 × 10−2, to be compared for the risk
δ = 0.05 with the level value 3.07× 10−2. Therefore, the
hypothesis that the subsample two has been generated
with the theoretical pdf F̂X obtained from subsample one
should be accepted. The corresponding df, estimated and
empirical cpdfs in log-log scale and quantile function ver-
sus ordered sample graph are presented in Figures 5, 6 and
7. The confidence interval for the maximum also includes
the maximum value in subsample two, xn2:n2 = 7:[

x∗n2
− ε (δ) ;x∗n2

+ ε (δ)
]

= [5.94; 7.86] . (84)

As in the case of France, there is no solid statistical
evidence of subcriticality. Also, since α is close to one and
s0 is close to 2/3, the identified distribution is close to a
power-law model with exponent µ = 2/3.

5.3 Expected time until next earthquake

An obvious question of interest is: how long should one
wait before the next earthquake of magnitude greater than
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Fig. 6. Complementary probability distributions as a function
of magnitude for Japan, log-log scale: empirical (solid line) and
estimated (dotted line).
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Fig. 7. Ordered sample versus quantile function for Japan.

a given level? This problem can be addressed through a de-
tailed statistical study of the time separating two consecu-
tive events [36]. A more pedestrian approach is to compute
the “mean time between failure”, which is defined as

Nx := inf (n : Xn > x) (85)

for some magnitude level x. It is easily shown that Nx
follows a geometrical distribution with parameter FX (x).
Assuming that the number of earthquakes per year, say θ,
is constant, equal to the total number of recorded earth-
quakes divided by the total collection period, the number
of years one would have to wait before the next earthquake
of magnitude greater than x is therefore equal to Nx/θ,
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Fig. 8. Estimated average time before next earthquake of mag-
nitude greater than x for France (dotted line) and Japan.

and can be estimated by

E {Nx/θ} =
1

θ [1− FX (x)]
· (86)

Figure 8 presents this estimated average time as a func-
tion of the magnitude in the cases of France and Japan.
In order to interpret such plots, one should recall that
magnitudes exceeding x = 8 correspond to very large and
rare events (on average, one earthquake of such size occurs
somewhere in the world each year). However, such fore-
casts should be taken cum grano saltis, because FX (x) '
1 for large x, so that the standard deviation of Nx/θ is of
the same order of magnitude than its mean:

σ {Nx/θ} =
FX (x)1/2

θ [1− FX (x)]
' 1
θ [1− FX (x)]

· (87)

The assumption that the number of earthquakes per
year is constant may seem rather restrictive. One may
replace this assumption by the following one, which is
more realistic: the (random) number of events occur-
ring on time interval [0; t), say Nt, is a Poisson variable
with rate θ. When t is measured in years, θ is the aver-
age number of events per year. Under this assumption,
the exact distribution function for the random variable
max (0, X1, . . . , XNt) is given for x > 0 by

P (max (0, X1, . . . , XNt) ≤ x) =∑
n≥0

P (max (0, X1, . . . , Xn) ≤ x)P (Nt = n) =

∑
n≥0

[FX (x)]n
exp

(
−θt

) (
θt
)n

n!
=

exp
[
−θt (1− FX (x))

]
. (88)

The event “max (0, X1, . . . , XNt) ≤ x” coincides with the
event “Tx > t”, where Tx is the first time when some X
exceeds the level x. From (88), Tx is exponentially dis-
tributed, with mean and standard deviation equal to

E {Tx} = σ {Tx} =
1

θ [1− FX (x)]
· (89)

Thus, if θ is estimated by the average number of events per
year in the sample, this result is consistent with (86,87).
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